Variance function estimation via model selection
نویسندگان
چکیده
منابع مشابه
Density estimation via exponential model selection
We address the problem of estimating some unknown density on a bounded interval using some exponential models of piecewise polynomials. We consider a finite collection of such models based on a family of partitions. And we study the maximum-likelihood estimator built on a data-driven selected model among this collection. In doing so, we validate Akaike’s criterion if the partitions that we cons...
متن کاملVariogram Model Selection via Nonparametric Derivative Estimation
Before optimal linear prediction can be performed on spatial data sets, the variogram is usually estimated at various lags and a parametric model is fitted to those estimates. Apart from possible a priori knowledge about the process and the user’s subjectivity, there is no standard methodology for choosing among valid variogram models like the spherical or the exponential ones. This paper discu...
متن کاملLocal Polynomial Variance Function Estimation
The conditional variance function in a heteroscedastic, nonparametric regression model is estimated by linear smoothing of squared residuals. Attention is focussed on local polynomial smoothers. Both the mean and variance functions are assumed to be smooth, but neither is assumed to be in a parametric family. The eeect of preliminary estimation of the mean is studied, and a \degrees of freedom"...
متن کاملVariance Estimates and Model Selection
The large majority of the criteria for model selection are functions of the ̂ 2, the usual variance estimate for a regression model. The validity of the usual variance estimate depends on some assumptions, most critically the validity of the model being estimated. This is often violated in model selection contexts, where model search takes place over invalid models. A cross validated estimate of...
متن کاملVariance Estimates and Model Selection Variance Estimates and Model Selection 2
The large majority of the criteria for model selection are functions of the ̂, the usual variance estimate for a regression model. The validity of the usual variance estimate depends on some assumptions, most critically the validity of the model being estimated. This is often violated in model selection contexts, where model search takes place over invalid models. A cross validated estimate of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applicationes Mathematicae
سال: 2010
ISSN: 1233-7234,1730-6280
DOI: 10.4064/am37-4-1